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Abstract. We study small-polaron self-trapping properties in the two-state molecular crystal
model by employing a finite-temperature variational non-adiabatic approach that is an extension
to the semiclassical adiabatic Pekar theory. We find two distinct regions in the space of coupling
constant versus adiabaticity parameter that are separated by a temperature-dependent critical line.
In these regions the response of the lattice to the motion of the particle is quite different. We find
conditions that allow for the determination of the character of the motion and the localization
transition as a function of the physical parameters of the system and temperature.

1. Introduction

The motion of particles and quasi-particles such as electrons, excitons, etc, that strongly
interact with lattice vibrations is typically accompanied by a local lattice distortion of the
host [1–9]. The dynamical properties of the resulting polarons are in general quite different
from those of the bare quasi-particles. There are two physical parameters that determine
the different polaron properties that depend on the bare particle band width: 2J (where
J is the intersite matrix element), and the maximal phonon energy ¯hωB . It is useful to
define an ‘adiabaticity parameter’B = 2J/h̄ωB in order to discuss the different extreme
limits. In the non-adiabatic limit(B � 1) the lattice distortion follows the particle motion
instantaneously, resulting in an effective mass increase and a reduction in the effective
tunnelling matrix element. Upon increase in the coupling between the quasi-particle and
the lattice vibrations, the tunnelling rate reduces further; the polaron motion then exhibits
a transition from the quasi-free propagation in the form of Bloch states (small-polaron
band states) to a self-trapped-like state. While being in this state a small polaron can still
propagate but in an incoherent fashion, i.e. through uncorrelated jumps between adjacent
lattice sites [3–6].

In the adiabatic regime(B � 1) the lattice distortion has a large inertia and it fails to
follow the particle motion; it forms an essentially static potential well where the particle
may be trapped. Depending on the value of the coupling constant, the spatial extent of the
lattice distortion may vary from being spread over few sites (weak-coupling limit) to being
localized on only a single site (adiabatic small polaron) [3–8].

In the large number of studies of the polaron problem, different types of approach
have been used for treating the vibrational degrees of freedom [1–9]. The two extreme
cases of non-adiabatic and adiabatic conditions are well understood through the specific
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approximate techniques. In the former case, one applies a unitary transformation that
partially diagonalizes the original Hamiltonian while the subsequent treatment is done
through a perturbation expansion in the small parameterB [4–6]. In the adiabatic limit, on
the other hand, the phonon system is effectively classical and one can apply the semiclassical
variational method of Landau and Pekar [1] and Holstein [3] or its time-dependent extension,
the Davydov [9]ansatz (DA). Since the applicability of both these methods is restricted
to very small parameter regions of the system, it is of fundamental interest to develop a
method that will work for an extended parameter regime and also interpolate between the
two limits. This is important from the point of view of real systems applications since many
systems lie in the intermediate regime [10].

In a recent paper [11] some of us used the time-dependent version of the Buimistrov–
Pekar [12] theory that interpolates between non-adiabatic and adiabatic limits in the
context of a two-state system in order to understand the precise nature of the self-trapping
phenomenon in particular regions of the parameter space and how it determines the nature
of polaron states. We found that, at zero temperature(T = 0) and irrespective of the type
of coupling, the parameter space of the system, comprised by the coupling constant versus
the adiabaticity parameter, is divided in two regions; in each one of these the system
exhibits distinct dynamical behaviours. The first is dominated by the quantum nature
of the phonon field and self-trapping is achieved through the reduction in the effective
tunnelling matrix element. In the second region the classical nature of phonons prevails,
and the system dynamics and localization transition are described by the discrete non-linear
Schr̈odinger equation. These results may be relevant to the understanding of the underlying
transport mechanisms in the phenomena involving charge and energy exchange between
two molecules embedded in condensed media where strong interaction with environment
may significantly affect transport processes [13–15].

An extension of these results to realistic problems demands the additional study of how
temperature affects these predictions. This is the purpose of this paper in which we study
how temperature modifies the self-trapped states and the conditions for their occurrence. In
our study of the temperature effect we use a variational method referred to as the averaged
Hamiltonian approach introduced by Davydov [9] and subsequently used extensively in the
study of the temperature stability of molecular solitons [16–18]. In the following section
we introduce our model and apply the variational approach, leading to specific conditions
for the temperature dependence of the self-trapped state. Subsequently we analyse these
results.

2. The model and variational method

The essential features of the system may be described on the basis of the two-site truncation
of the Fr̈ohlich Hamiltonian:

H = −J (a+
1 a2 + a+

2 a1) + 1

N1/2

∑
n=1,2,q

Fq exp(iqnR0)a
+
n an(bq + b+

−q) +
∑

q

h̄ωqb
+
q bq (1)

where J defines the intersite tunnelling matrix element andb+
q (bq) are Bose operators

creating (annihilating) phonon quanta in modeq with frequencyωq . The operatorsa+
n (an)

denote the presence (absence) of the particle (electron, exciton, etc) on a particular site
and R0 is the lattice constant. Each particular application is specified by the explicitq-
dependence of the coupling parameterFq and phonon dispersion. In the present paper we
shall focus our attention on the simplest case where the Hamiltonian (1) corresponds to
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Holstein’s [3] molecular crystal model (MCM) withFq = F ≡ constant andωq = ω0 ≡
constant.

The basis of our approach is a slightly modified version of the Davydov so-calledD1

ansatzwith normalized trial state given as

|ψν(t)〉 =
∑
n=1,2

ψn(t)U1(t)U2a
+
n |0〉e ⊗ |ν〉ph,

∑
n=1,2

|ψn|2 = 1. (2)

Here ψn denotes the probability of amplitude of the occupation of thenth site, and
|ν〉 = ∏

q |νq〉(|νq〉 = (νq !)−1/2(b+
q )νq |0〉ph) represents the thermally populated multiphonon

states whereνq represents the phonon population in theqth mode. Unitary operatorsU1(t)

andU2 are given by

U1 = exp

( ∑
q

[βq(t)b
+
q − β∗

q (t)bq ]

)
U2 = exp

( ∑
q,n

[fq exp(iqnR0)a
+
n an(bq − b+

−q)]

)
(fq = f ∗

−q). (3)

The operatorsU1 andU2 are introduced in order to incorporate formally the two types
of lattice response to the tunnelling particle in the theoretical description of the system.
The time-dependent amplitudesβq(t) describe the slow (i.e. the classical) component of
the phonon field engaged in the creation of lattice distortion. The remaining contribution
arising from the ‘fast’ phonons is measured by the value of the variational parameterfq

which characterizes the degree of reduction of the effective tunnelling frequency. Note that
an analogous variational procedure has been performed before by Toyozawa [5, 6] and Emin
[7] but without taking into account the classical part of the phonon field.

According to the papers of Brown and Ivić [19], the equations of motion for these
variables follow from the set of the Hamilton’s equations:

ih̄β̇q(t) = ∂H(θ)

∂β∗
q (t)

ih̄ψ̇n(t) = ∂H(θ)

∂ψ∗
n(t)

. (4)

Here H(θ) represents the averaged Hamiltonian which, in the present context, plays the
role of the Hamilton function:H(θ) = ∑

ν ρνHνν andHνν = 〈ψν |H |ψν〉, whereρν is the
phonon density matrix. The explicit expression forH(θ) is

H(θ) = −J exp(−x)(ψ∗
1ψ2 + ψ∗

2ψ1)

+ 1

N1/2

∑
n=1,2,q

(Fq − h̄ωqfq) exp(iqnR0)(βq + β∗
−q)|ψn|2

+
∑

q

h̄ωq(|βq |2 + |fq |2 + ν̃q) − 1

N1/2

∑
q

(Fqf
∗
q + F ∗

q fq). (5)

Herex = 2
∑

q |fq |2(2ν̃q + 1)[1 − cos(qR0)] represents a temperature-dependent ‘dressing’
parameter(ν̃q = [exp(h̄ω0/θ) − 1]−1 ≡ ν denotes the average phonon number, while
θ = kBT ).

The dynamics of the system are described by the set of evolution equations

ih̄ψ̇m = −J exp(−x)ψp + 1

N1/2

∑
q

(Fq − h̄ωqfq) exp(iqnR0)(βq + β−q)ψm

ih̄β̇q = h̄ωqβq + 1

N1/2

∑
n=1,2

|ψn|2(F ∗
q − h̄ωqf

∗
q ) exp(−iqnR0).

(6)
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In this equation,p = 2 for m = 1, andp = 1 for m = 2. As before [11], here we have
disregarded the possible time dependence of the parameterfq , being primarily interested in
the most significant effect reflecting the quantum nature of phonons: the reduction in the
effective tunnelling matrix element. We shall findfq self-consistently by minimizing the
energy of the system which corresponds to the stationary value ofH(θ) after the substitution
of static solutions forψn andβq in equation (5). Eliminating the static phonon amplitudes
βq from the above system and using the normalization constraint forψn, we find that

ψ1,2 = 1√
2

1 ±
√

1 −
(

J exp(−x)

ε

)2
1/2

. (7)

ε is given here, in the context of the analysis of the small-polaron properties in terms of
Holstein’s model, simply by

ε = h̄ω0

∣∣∣∣ F

h̄ω0
− f

∣∣∣∣2

. (8)

We have anticipated here that the variational parameterfq is q independent which is not
an additional approximation but follows straightforwardly from the direct calculations [11].
Substituting (7) into the expression for theH(θ) we obtain

E(θ) = −J 2 exp(−2x)

2ε
− EB +

∑
q

h̄ωq ν̃q (9)

whereEB = (1/N)
∑

q |Fq |2/h̄ωq ≡ F 2/h̄ω0 denotes the small-polaron binding energy. In
order to simplify further calculations we follow the procedure as in [11] and choose the
variational parameter in the following form:

f = 1

N1/2

F

h̄ω0 + a(2ν + 1)
(10)

with the new variational parametera. Minimizing the energy (9) with respect toa we obtain
a = 2ε together with the stability condition 1+ (a∂x/∂a)a=2ε〉 > 0. Substituting the above
expression into equation (8) and into the expression for the dressing parameter, we obtain

ε = h̄ω0

2ν + 1

[
S(θ)

(
1 +

√
1 − 1

S(θ)

)
− 1

2

]

x = S(θ)

(
1 −

√
1 − 1

S(θ)

)
− 1

2

(11)

whereS(θ) = (EB/h̄ω0)(2ν + 1) ≡ S(2ν + 1) denotes temperature renormalized coupling
constant. The stability condition for these solutions ¯hω0/4ε < 1 is always satisfied if
S(θ) > 1. The condition for the applicability of the semiclassical approximation can
be found from equation (7):J exp(−x) < ε or in terms of the coupling constant and
adiabaticity parameter:

B <
2

2ν + 1

[
S(θ)

(
1 +

√
1 − 1

S(θ)

)
− 1

2

]
exp

[
S(θ)

(
1 −

√
1 − 1

S(θ)

)
− 1

2

]
. (12)

As was emphasized in [11], this condition is the consequence of the symmetry-breaking
nature of the proposed trial state which was formally introduced assuming the non-
vanishing value of the classical component of the phonon fieldβq . If this condition is
violated, the semiclassical approximation is no longer valid and one must setβq = 0,
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while the variational procedure should be carried on in a typical mean field manner. It
assumes self-consistent determination of the variational parameter by minimizing the free
energy corresponding to the transformed HamiltonianH̃ = U+

2 HU2 [15]. This results in
a = 2J exp(−x) tanh{[J exp(−x)]/θ}, while the stability condition now becomes

1 + a
∂x

∂a

[
1 + a

2θ sinh2{[J exp(−x)]/θ}

]
a=2J exp(−x) tanh{[J exp(−x)]/θ}

> 0. (13)

In this case the dressing parameter cannot be found in closed form; however, it is possible
to express the coupling constant as a function ofx with temperature and adiabaticity as
parameters:

S = x

2

[
1 + B exp(−x) tanh

(
αB exp(−x)

2

)
coth

(α

2

)]2

tanh
(α

2

)
(14)

with the stability condition specified as

1 − 2x

1 + [2 tanh(α/2)]/αB exp(−x)

[
1 + αB exp(−x)

2 cosh[B exp(−x)]

]
> 0 (15)

whereα = h̄ω0/θ .

Figure 1. Symmetry-breaking versus symmetry-preserving regions (curves a–c) and localization
boundaries (curves a′–c′) in the S–B plane for the three different temperatures: lines a and a′,
α = ∞; lines b and b′, α = 1; lines c and c′, α = 0.5 (α = h̄ω/θ ).

3. Results and discussion

Our results are visualized in figures 1–3. In figure 1 we have plotted the so-called symmetry-
breaking boundaries (the origin of this term was explained in [11]), curves a, b and c, for
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a few different temperatures measured in units of ¯hω0. Obviously there is no substantial
qualitative difference in the form of these lines at finite temperatures compared with the zero-
temperature case. Thus above some critical value of the coupling constantSc = (2ν +1)−1,
which is determined by the condition of the non-negativity of the expression under the
square root in equations (11) and (12), the parameter space of the system (S–B plane)
is divided into two regions: a symmetry-preserving region lying above these lines with
system dynamics being governed by the quantum nature of phonons, and a symmetry-
breaking region with phonons behaving in a classical manner. Increasing the temperature
lowers the value of the critical coupling constant and therefore enhances the classical nature
of phonons, enlarging the symmetry-breaking region. Behaviour of the dressing parameter
as a function of the temperature and coupling constant in the symmetry-breaking region
(figure 2) supports the above conclusion. Similarly to the zero-temperature case (line a
in figure 2), dressing does not depend on adiabaticity and it is most significant in the
weak-coupling limit, rapidly vanishing with increase in the coupling constant. According
to the explicit temperature dependence of the effective coupling constant it follows that the
temperature increase causes an increase inS(θ) which results in an additional decrease in
the magnitude of the dressing parameter (lines b and c in figure 2).

Figure 2. The influence of the temperature on the dressing parameterx as a function of the
coupling constantS in the symmetry-breaking region: curve a,α = ∞; curve b,α = 1; curve
c, α = 0.5.

In order to examine small-polaron dynamics, and self-trapping in particular, in the
symmetry-breaking region one must analyse the long-time behaviour(t → ∞) of the
intersite transition probabilityP(t) = |ψ1(t)|2 − |ψ2(t)|2. According to the numerous
analytical and numerical studies of the time evolution ofP(t) in various contexts [20, 21],
it follows that, depending on the values of the system parameters,P(t) in the long-time
limit, irrespective of the type of the coupling, may decay either into one of its stationary
(minimum-energy states)P(∞) = ±

√
1 − [J exp(−x)/ε]2 (self-trapping) or it may tend

to P(∞) = 0 (delocalization). Therefore in the long-time limit the equation of motion for
P(t), which in the general case may have a quite complicated form, can be approximated
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Figure 3. Behaviour of the dressing parameter as a function of the coupling constant in the
symmetry-preserving region for three different temperatures: curve a,α = ∞; curve b,α = 1;
curve c,α = 0.5.

as follows [11, 20]:

P̈ + 1

2

[
1 −

(
ε

J exp(−x)

)2
]

P + 1

2

(
ε

J exp(−x)

)2

P 3 + D(P )Ṗ = 0 (16)

whereD(P ) represents the non-linear friction coefficient responsible for driving the system
towards the above-mentioned equilibrium states. Its explicit form for the present analysis
is irrelevant.

The self-trapping transition in this case may be understood on the basis of the well
known classical analogy where equation (16) describes the motion of the classical particle
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in the double-well potential:

U(P ) = 1
2(P 2 − 1)

[
1 − 1

2

(
ε

J exp(−x)

)2

+ 1

2

(
ε

J exp(−x)

)2

P 2

]
. (17)

As shown in [11] the localization is determined by the height of the ‘potential barrier’
U(0) = − 1

2{1 − 1
2[ε/J exp(−x)]2}. Thus, for U(0) < 0 which implies that 1< ε/J

exp(−x) <
√

2, transfer is possible while self-trapping arises whenU(0) ≥ 0. It implies
the localization conditionε/J exp(−x) >

√
2 or in terms of the coupling constant and

adiabaticity

B <

√
2

2ν + 1

[
S(θ)

(
1 +

√
1 − 1

S(θ)

)
− 1

2

]
exp

[
S(θ)

(
1 −

√
1 − 1

S(θ)

)
− 1

2

]
. (18)

Therefore, analogously to the previously examined case [11], the symmetry-breaking region
for it is divided in two parts and self-trapping is determined by the above inequality. It
defines the line in theS–B plane and localization arises if the system parameters correspond
to those points lying below this, say, the localization boundary. In order to see how the
temperature influences the self-trapping condition in figure 1 together with the symmetry-
breaking boundaries at finite temperatures we also plotted lines a′, b′ and c′. It follows that
an increase in temperature favours enlargement of the localization region compared with
the zero-temperature case.

Thus we can conclude that temperature plays a twofold role in the particle tunnelling in
the symmetry-breaking region. On the one hand it supports tunnelling through a decrease
in the dressing parameter (increase in the effective tunnelling frequency), and on the other
hand it favours localization, enlarging the region of parameter space where it may occur.

Both effects arise due to the classical nature of phonons which, as pointed out in
[11], is the consequence of the increase in the level of excitation of phonon modes, which
become macroscopically (classically) populated in the strong-coupling case. A rise in the
temperature produces a similar effect by additionally increasing the number of phonons in
each mode and in this way it enhances the ‘classicity’ of the phonon field. Consequently,
dressing (the result of the quantum nature of phonons) is most significant in the weak-
coupling limit (S(θ) ∼ 1), becoming negligible in the strong-coupling limit.

Furthermore the rise in the temperature and increase in coupling strength increase the
number of phonons engaged in the creation of potential well which accompanies particle
motion. This implies an increase in the height of the ‘potential barrier’U(0) for the
double-well potential (17). We can estimateU(0) in the strong-coupling limit(S � 1) at
T = 0 asU0(0) ∼ − 1

2[1 − 2(2S − 1)2/B2] while in the high-temperature case we have
U∞(0) ∼ − 1

2[1 − 8S2/B2]. Thus U∞(0) − U0(0) ∼ 4S/B2, which means that the high
temperature induces an additional increase in the height ofU(0) and in this way favours
localization.

Therefore, if the system parametersS andB fall into that part of parameter space lying
below the symmetry-breaking boundaries, the semiclassical approximation is satisfactory
and small-polaron dynamics are well described in terms of the discrete non-linear
Schr̈odinger equation. For the present two-site problem, it finally results in a non-linear
evolution equation for the transition probability (16). According to [11], the dynamics of the
system, as described by that equation, exhibit a self-trapping transition which, depending
on the values ofS and B, may be achieved in two different ways. Thus, when these
parameters lie in the area between the symmetry-breaking and localization boundaries, the
particle initially localized on one site(P (0) = ±1) in the beginning oscillates between
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these localized states with a transition into oscillations around one of the minimal energy
states:P1,2 = ±

√
1 − [J exp(−x)/ε]2, in the long-time limit. WhenS andB lie below the

localization boundary,P(t) rapidly stabilizes intoP =
√

1 − {[J exp(−x)]/ε}2 if P(0) = 1
or P = −

√
1 − {[J exp(−x)]/ε}2 whenP(0) = −1.

Note that the above analysis does not take into account the effect of the so-called
phonon-induced (phonon-assisted) hopping [22], which has quite the opposite effect so that
in the final instance the temperature could destroy localized states. Localization breakdown
has been examined recently by May and Schreiber [23] within the framework of the density
matrix theory. Their results cannot directly apply in our case since only one aspect of
phonon field, the quantum aspect, has been considered. However, we believe that the
combination of the present variational approach and density matrix theory could be used in
order to analyse localization breakdown in the symmetry-breaking region.

In the symmetry-preserving region the dressing parameter increases with rise in the
temperature and increase in the coupling constant (figure 3). Here we have plotted the
set of adiabatic curvesS = S(x) for a fixed adiabatic parameter, for several different
temperatures. The dotted part of these adiabatic curves represents those points in parameter
space where the stability condition (15) is not satisfied. Looking at these curves as a
functional dependence of the dressing parameter on the coupling constantx = x(S) with α

andB being the parameters, we observe that the finite-temperature behaviour ofx exhibits
qualitatively the same character as in the zero-temperature case. Thus, forB < Bc, which is
different for each temperature,x exhibits a gradual rise with increasing coupling constant.
WhenB exceeds its critical value,x for each value ofS has three values, but only two of
them correspond to the stable minimum-energy eigenstates of the system.

This two-minima structure of the ground-state energy (free energy atT 6= 0) as a
function of the variational parameter was usually assigned to the occurrence of two types
of small-polaron state: the free state (smallx) and the self-trapped state (largex) with an
abrupt (discontinuous) localization transition [5–7]. However, these conclusions are in sharp
contradiction to the exact numerical studies of the two-state MCM [24–28] which does not
predict a two-minima structure forEGS and consequently no discontinuous transition of the
free states to the self-trapped states can be expected. Thus the two-minima structure of
EGS is just an artefact of the oversimplified variational procedure. In fact in the improved
variational approaches it disappears [24, 27]. In this way the possibility of discontinuous
self-trapping was eliminated while the quasi-particle effective mass exhibits a continuous
although sudden increase as a function of coupling constant. In our notation the dressing
parameter corresponds to ln(meff /m) in [24] (meff andm denote the masses of the dressed
and the bare quasi-particle, respectively). This behaviour was usually considered to be
a gradual self-trapping transition due to the reduction in the effective tunnelling matrix
element. In the light of the present results, however, we must question this interpretation
which ignores the possibility of the manifestation of the classical features of the phonon
field. Namely, fromS(x) in figure 3, one should exclude the points where condition (12) is
satisfied and which therefore corresponds to the symmetry-breaking phase. Thus, using this
condition, which in the strong-coupling limit may be roughly approximated asB < 4S, we
obtain that the physically meaningful region in theS–x plane lies below the lineS = B/4
(chain curve in figure 3). AtT = 0, this excludes the second minimum falling into the
large-x range, and the possibility of the self-trapping due to the ‘dressing’ mechanism is
eliminated. Consequently we expect that in the symmetry-preserving region (atT = 0) in the
adiabatic limit(B > 1) the self-trapping transition cannot occur while in the non-adiabatic
limit (B < 1) it arises through a continuous rise in the dressing parameter. This conclusion is
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supported by exact numerical examinations ofEGS [25–28] which are, for the corresponding
values of the system parameters, in very good agreement with the semiclassical (adiabatic)
estimates. Thus localization due to the ‘dressing’ mechanism should be expected in the
non-adiabatic limit only and it appears whenx approaches infinity which corresponds to
S = x/2(T = 0) or S = xα/2(T → ∞). Following Emin [7] we may formulate the
localization condition using relation (15):

1 + B exp(−2S) ≥ 0 (T = 0)

1 + [B exp(−4S/α)]2(1 − 16S/α) ≥ 0 (T → ∞).
(19)

A temperature rise favours self-trapping providing high values of the dressing parameter
even for very small values of the coupling constant (figure 3). Furthermore in the adiabatic
limit, where at zero temperature we do not expect any localization, our analysis indicates, as
shown in figure 3, that a temperature rise could induce self-trapping through a discontinuous
increase in the quasi-particle effective mass. However, in the framework of the present
method we are not in a position to conclude whether such predictions could be accepted
as a real physical possibility or simply reflect the limited validity of the present variational
approach. This problem will be examined separately with the help of improved variational
methods, in connection with the analysis of the small-polaron properties, its dynamics in
particular, in the symmetry-preserving region.

In order to estimate the region of parameter space where the above predictions could
apply, we need to compare the present results with those previously obtained by means of
different approaches. Comparing the ground-state energy resulting from our method with
that obtained by means of the fully semiclassical treatment [25] we find that the present
approach predicts lower estimates for the ground-state energy if the following relation holds:

exp

[
−S

(
1 −

√
1 − 1

S

)
+ 1

2

]
> 1 +

√
1 − 1

S
− 1

2S
. (20)

It provides superiority of the present method with respect to the strict semiclassical approach
in the whole parameter space. Furthermore, comparison of the ground-state energies
obtained by the pure semiclassical treatment with that following from the simple ‘dressing’
ansatzin the recent paper [29] shows that the condition for the superiority of semiclassical
approach with respect to the ‘dressing’ approach is almost equivalent to our relation (12).
Having in mind the very good agreement of the semiclassical calculations with exact
numerical data [25–29], we may conclude that the present method gives a satisfactory
description of the two-site small-polaron model in the symmetry-breaking region. On the
other hand the validity of our predictions is limited in the symmetry-preserving region in
the high adiabatic limit which demands improved treatment.
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